
IoTivity: Cloud Native Architecture and the
Internet of Open Source Things

Peter Moonki Hong, Ph.D.

Samsung Electronics

11/2/2015 1

Messages in our talk today…

Keys in Internet of Things (IoT) are Interoperability and Contribution

• That can be achieved by Open Source and Open Standard

IoTivity and the Open Interconnect Consortium (OIC) provide

• The Communication Protocol with all types of data exchanges
among Devices, Things, and the Cloud

Features provided by IoTivity

• Reference implementation of the OIC Specification Plus Alpha
that are purely encouraged in open source manner

And TECHNICAL DETAILs that IoTivity is providing and will provide!
11/2/2015 2

Definition of IoT?

Network of networks? More data?
Operation with better efficiency? Things re-invention? …

11/2/2015 3

※ Source: Influxis

INTERNET collaborating with BILLIONS of VARIOUS THINGS !

The Prerequisite is…

INTER + NETWORKING without limitation, providing

• Connectivity agnostic, platform transparent, scalable communication protocol
with low memory footprint compatible to ALL TYPES of THINGS

• Of course, technical perfection is important, but…

11/2/2015 4

Open for Contribution

Best Efforts

Code Base Interoperability

Which is the same approach as IETF RFCs

Our Approach Is To…

Launch OPEN SOURCE and OPEN STANDARD

• Achieving Open Contribution and Code-Based Interoperability at the same time

11/2/2015 5

IoTivity and the Open Interconnect Consortium (OIC) have been launched in 2014!

• Specify and Implement the Communication Protocol that all types of

data exchanges can be supported among Devices, Things, and the Cloud

• Provide Specification, Open Source code, and Certification Program

with developers-friendly IPR Policy accelerating deployment and contribution

High Level OIC/IoTivity Governance

11/2/2015 6

Standards

Board of Directors

OIC

Open Source

IoTivity
Open Source Project

Membership

Technology

Planning

Ecosystem

Marketing

Communications

Work Closely

Sponsored (funded) by OIC

Develops reference implementation

of OIC standard

Steering Group

Projects

Functions

Scope of Availability

IoTivity code that is COMPLIANT to the OIC Spec is OPEN to EVERYBODY!

• Source code: Apache 2.0 license

• OIC Spec compliant reference implementation + ALPHA

11/2/2015 7 “I want to CONTRIBUTE to the IoTivity implementation!”

“What does IoTivity look like?”

“As a guaranteed S/W, I want to EMPLOY IoTivity for my product!”

Then, What Does IoTivity Look Like?

11/2/2015 8

Framework

Profiles
Smarthome Enterprise Industrial Automotive Education Health

Security, Identity & Permissions

Discovery
Data

Transmission

Data

Management

Device

Management

Transports
(Smart)

Remote
Access Cloud

Resource Model

Conceptual Framework:

IoTivity S/W Stack in Detail

11/2/2015 9

REST
Framework

Control/Controllee
Manager(CM Ver.)

Protocol Plugin
Manager

Soft Sensor
Manager

Things
Manager

Notification
Manager

Additional
Service

Basic
Service

Resource

IoTivity Base 2
(C++ SDK)
(UD Ver.)

IoTivity Base 1
(C API Stack/Internal)

JSON
Encoder/Decoder

OCSocket (Socket Abstraction)

Logger

OCStack

OCCoAP (Transport)

Resource Manager
(Registration, Discovery, Attribute GET/SET/OBSERVE)

Connectivity
Libcoap-

4.1.1
ocrandom ocmalloc

Io
T
iv

it
y
 F

ra
m

e
w

o
rk

Transport
Protocol UDP/IP TCP/IP (Future) Future PAN (Future)

IoTivity Service

OIC Spec-Compliant

IoTivity Base (Resource)

RESTful architecture representing all stuff as RESOURCE

• Primary message protocol:
CoAP (Constrained Application Protocol) in IETF

• CRUD&N interaction between Client and Server

• Application Layer protocol with Connectivity agnostic, Platform transparent

• IP/UDP-based, but TCP-based and even non-IP transport are also provided!
(e.g. Bluetooth, ZigBee, etc.)

• Guaranteeing end-to-end security per packet employing DTLS, ACL, etc.

Corresponding IoTivity Project:

• Discovery & Connectivity Project

• Security Project
11/2/2015 10

Features Provided from IoTivity Base

With respect to the interaction between CLIENT and SERVER

• Resource registration (Server)

• Resource discovery (Client)

• Device discovery with filtering (Client) – e.g. GET /oc/core?rt=light

• Property manipulation (get/set/observe) (Client/Server)

• Hierarchic resource (resource with sub-resources)

11/2/2015 11

Set your Status to On

OIC
Client

OIC
Server

R

ModeType: Server / Client / Both

Provides API to select the role:

11/2/2015 12

Registering a Resource

11/2/2015 13

Legend

Application

IoTivity Base SDK

IoTivity Base Stack

IoTivity Embedded Device

Functional Call

IPC Call (future)

Smart Device

Application

C++ API (SDK)

C API (Stack/Internal)

JSON
Encoder
Decoder

OCStack

OCCoAP
(Transport)

OCSocket (Socket Abstraction)

①

②

(1) platform.registerResource(“/light/1”,rt,if,…)

(2) IPC call to lower stack which calls
 OCCreateResource(&handle, rt, if, “/light/1”, hander, flags)
 In OCStack, creates a OCResource record which is added to the resource linked list

NOTE:
• For the purpose of clarity, we have only given important parameters in the APIs
• It is recommended that resources be registered before starting the asynchronous processing (OCProcess) to

prevent race conditions such as the entity handler being called before registerResource() returns.
This is generally not a problem on bare metal platforms such as Arduino, but could be an issue on multi-
threaded platforms.

(Notice) Should register ONE Resource per URL

ISV
Server
App

SDK
Server

Wrapper
(Internal)

OCStack
(Internal)

(1) platform.registerResource(…)
(2) InProcServer.registerResource(…)

(3) OCCreateResource(…)

OCStackResult
Failure/Success

Failure/Success

Finding a Resource – 1/2

11/2/2015 14

Smart Device

Application

C++ API (SDK)

C API (Stack/Internal)

JSON
Encoder
Decoder

OCStack

OCCoAP
(Transport)

OCSocket (Socket Abstraction)

①

②

Legend

Application

IoTivity Base SDK

IoTivity Base Stack

IoTivity Embedded Device

Functional Call

IPC Call (future)

Message

(1) platform.findResource(“/oc/core”,…)

(2) IPC call to lower stack which calls
 OCDoResource(GET, “/oc/core”, null, null, NON, getCallback)

(3) Multicast (GET /oc/core)
 coap_send(context, host, packet)
 coap_send_impl(context, host, packet)

(4) Response only from the device that meets the query

(5) The CoAP transport calls getCallback() with the response
(6) The getCallback() for the C++ API parses the JSON and returns the results via the findCallback

NOTE: For the purpose of clarity, we have only given important parameters in the APIs

IoTivity Device IoTivity Device IoTivity Device

③

④

⑤

⑥

Finding a Resource – 2/2

11/2/2015 15

ISV
Client App

SDK
Client

Wrapper
(Internal)

OCStack
(Internal)

Network
(CoAP)

(1) platform.findResource(…)

(2) client.findResource(…)

(3) OCDoResource(…)

(4) Request via multicast

Failure/pending Failure/pending

Message Pump (5a) Unicast response
 from 192.168.1.11

(5b) Unicast response
 from 192.168.1.12

(6a) Invoke
 wrapperAsyncCallbackFunc

(6b) Invoke
 wrapperAsyncCallbackFunc

(7a) asyncCallbackFunc with resource object

(7b) asyncCallbackFunc with resource object

Querying Resource State [GET]

11/2/2015 16

ISV
Client
App

Client
SDK

Client
Wrapper
(Internal)

Client
OCStack
(Internal)

Server
OCStack
(Internal)

Server
Wrapper
(Internal)

Server
SDK

ISV
Server
App

Message Pump

Message Pump

(1) resource.get(callback)

(2) InProcClient.get(callback)

(3) OCDoResource()

(4) GET /light/1 Failure/pending

(5) call entity handler

(6) call OCResource

(7) InProcClient.get()

(8) Return code (9) Return code (10) Return code

(11) ACK, CONTENT
(12) invoke
 wrapperAsyncCallbackFunc

(13) asyncResultHandler

Setting a Resource State [SET]

11/2/2015 17

ISV
Client
App

Client
SDK

Client
Wrapper
(Internal)

Client
OCStack
(Internal)

Server
OCStack
(Internal)

Server
Wrapper
(Internal)

Server
SDK

ISV
Server
App

Message Pump

Message Pump

(1) resource.put(attributeMap, callback)

(2) InProcClient.setResourceAttributes(attributeMap, callback)

(3) OCDoResource()

(4) PUT /light/1 Failure/pending

(5) call entity handler

(6) call OCResource

(7) InProcClient.put(attributeMap)

(8) Return code (9) Return code (10) Return code

(11) ACK, CHANGED
(12) invoke
 wrapperAsyncCallbackFunc

(13) asyncResultHandler

Observing Resource State
[Observe] – 1/2

11/2/2015 18

ISV
Client
App

Client
SDK

Client
Wrapper
(Internal)

Client
OCStack
(Internal)

Server
OCStack
(Internal)

Server
Wrapper
(Internal)

Server
SDK

ISV
Server
App

Registration

(1) resource.observe()

(2) InProcClient.observe()

(3) OCDoResource() Failure/pending

(4) GET /light/1

Message Pump

(5) call entity handler

(6) call OCResource

(7) InProcClient.observe()

(8) Return code (9) Return code (10) Return code

(11) ACK, CONTENT Message Pump

(13) asyncResultHandler (12) invoke
 wrapperAsyncCallbackFunc

Observing Resource State
[Observe] – 2/2

11/2/2015 19

ISV
Client
App

Client
SDK

Client
Wrapper
(Internal)

Client
OCStack
(Internal)

Server
OCStack
(Internal)

Server
Wrapper
(Internal)

Server
SDK

ISV
Server
App

Notification

(15) OCNotifyObservers()

(16) OCNotifyObservers()

(17) CON, CONTENT Message Pump

(19) asyncResultHandler (18) invoke
 wrapperAsyncCallbackFunc

Cancellation

(20) (21) (22) OCCancel()
(23) GET /light/1

(14) Change Event

IoTivity Service Features

Also provides developer-friendly SERVICE APIs that can be frequently utilized like:

• Things Manager for grouping

• Soft Sensor Manager for data aggregation

• Protocol Plugin Manager and Web Service Interface for extensibility

Corresponding IoTivity Project:

• Primitive Service Project

• Web Service Interface Project

11/2/2015 20

Things Manager

Provides Activation and/or Configuration of the GROUP of THINGS:

• CRUD & N of the Group, Configuration of the Group Action-Set

11/2/2015 21

App. Logic

IoTivity

Rich Dev.

Group
Action

Group
Formation

DTV

1. Find the resources with
 necessary capabilities

2. Find & Observe

3-1. Display On

3-2. Close the Curtain

3-3. Lower the
 Brightness

Logic

Base

Curtain

Logic

Base

Light Bulb

Logic

Base

3. Send Action Msgs.

Legend

Library

Functions

IoTivity Comm.

 A process

Business logic

External System

Soft Sensor Manager

Provides a service for sensors’ DATA RE-DEFINITION:

• (Example) “Discomfort” sensor – temperature + humidity sensors

11/2/2015 22

Legend

Library

Functions

IoTivity Comm.

 A process

Business logic

App. Logic

Soft-Sensor

Manager

Soft-Sensor

(Comfort-ness)

IoTivity-Base

Logic

Base

Logic

Base

Logic

Base

Temp Sensor.

Humidity Sensor.

Light Sensor.

1. Deliver query
 “Inform me when index of comfort < 10”

2. Find & Observe

3. Deliver sensor
 data

4. Deliver sensor data
 to the soft-sensor

5. Process the sensor
 data & analyze
 the “Comfort”

Rich Dev.

External System

Protocol Plugin Manager

Provides EXTENSIBILITY for non IoTivity-based protocols

• Loads the correspondent Protocol Plugin as .so at the given run-time

11/2/2015 23

App. Logic

IoTivity

Rich Dev.

Plug-In
(HUE)

Plug-In
Management

Hue Bulb.

App. Logic

1. Find the resources
 “/Device/LightBulb”

2. Find & load
 the plugin

Resource
Management 3. 3rd party

Discover Service
4. Register
 resource

6. Deliver control
 msg.

5. Send control message

Legend

Library

Functions

IoTivity Comm.

 A process

Business logic

External System

Web Service Interface

Provides functionalities for enabling connection between IoTivity & Internet

• Mapping OIC resource representation to web services APIs with RESTful
manner for CRUD&N methods

• Providing application model for aggregating Internet services and things

11/2/2015 24

IoTivity
Device

IoTivity
Web Service

Interface

Internet
Services

Other Internet
Services

Web Services

IoTivity
Network

Internet

IoTivity
Device

IoTivity
Device

IoTivity v1.0 Has Been Just Released!

Features:

• Reference implementation of the full OIC Specification v1.0

• Multi-PHY easy setup (on-Boarding): Wi-Fi OnBoarding with SoftAP

• Remote Access based on XMPP

• CoAP over TCP on Linux

• Resource directory

• Simulator for Java API (Linux): for OIC resource (Server/Client)

• IPv6 and 6LoWPAN

• Bluetooth Serial RFCOMM for Android, BLE GATT for Linux, Android, Arduino

• Block-wise Transfer over IP/Bluetooth

• ZigBee and Z-Wave service profile plugin

11/2/2015 25

How Can I Contribute to IoTivity?

[Reference] https://iotivity.org

• Discuss on mailing list to get general consensus about approach

• Pull latest code

• Build on Your Supported Build Platform

• Develop feature or fix bug following IoTivity Coding Standards;
ask questions on mailing list as needed

• Submit to Gerrit for review

• Review and respond to reviewer comments

• Change accepted!

11/2/2015 26

Thank you!
- Stay tuned on iotivity.org and openinterconnect.org -

moonki1.hong@samsung.com

11/2/2015 27

