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Messages in our talk today… 

Keys in Internet of Things (IoT) are Interoperability and Contribution 

• That can be achieved by Open Source and Open Standard 

 

IoTivity and the Open Interconnect Consortium (OIC) provide 

• The Communication Protocol with all types of data exchanges 
among Devices, Things, and the Cloud 

 

Features provided by IoTivity 

• Reference implementation of the OIC Specification Plus Alpha 
that are purely encouraged in open source manner 

 

And TECHNICAL DETAILs that IoTivity is providing and will provide! 
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Definition of IoT? 

Network of networks? More data? 
Operation with better efficiency? Things re-invention? … 
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※ Source: Influxis 

INTERNET collaborating with BILLIONS of VARIOUS THINGS ! 



The Prerequisite is… 

INTER + NETWORKING without limitation, providing 

• Connectivity agnostic, platform transparent, scalable communication protocol 
with low memory footprint compatible to ALL TYPES of THINGS 

• Of course, technical perfection is important, but… 
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Open for Contribution 

Best Efforts 

Code Base Interoperability 

Which is the same approach as IETF RFCs 



Our Approach Is To… 

Launch OPEN SOURCE and OPEN STANDARD 

• Achieving Open Contribution and Code-Based Interoperability at the same time 
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IoTivity and the Open Interconnect Consortium (OIC) have been launched in 2014! 

 

 

 

• Specify and Implement the Communication Protocol that all types of 

data exchanges can be supported among Devices, Things, and the Cloud 

• Provide Specification, Open Source code, and Certification Program 

with developers-friendly IPR Policy accelerating deployment and contribution 



High Level OIC/IoTivity Governance 
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Scope of Availability 

IoTivity code that is COMPLIANT to the OIC Spec is OPEN to EVERYBODY! 

• Source code: Apache 2.0 license 

• OIC Spec compliant reference implementation + ALPHA 
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“What does IoTivity look like?” 

“As a guaranteed S/W, I want to EMPLOY IoTivity for my product!” 



Then, What Does IoTivity Look Like? 
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IoTivity S/W Stack in Detail 
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IoTivity Base (Resource) 

RESTful architecture representing all stuff as RESOURCE 

• Primary message protocol: 
CoAP (Constrained Application Protocol) in IETF 

• CRUD&N interaction between Client and Server 

• Application Layer protocol with Connectivity agnostic, Platform transparent 

• IP/UDP-based, but TCP-based and even non-IP transport are also provided! 
(e.g. Bluetooth, ZigBee, etc.) 

• Guaranteeing end-to-end security per packet employing DTLS, ACL, etc. 

 

Corresponding IoTivity Project: 

• Discovery & Connectivity Project 

• Security Project 
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Features Provided from IoTivity Base 

With respect to the interaction between CLIENT and SERVER 

• Resource registration (Server) 

• Resource discovery (Client) 

• Device discovery with filtering (Client) – e.g. GET /oc/core?rt=light 

• Property manipulation (get/set/observe) (Client/Server) 

• Hierarchic resource (resource with sub-resources) 

11/2/2015 11 

Set your Status to On 

OIC 
Client 

OIC 
Server 

R 



ModeType: Server / Client / Both 

Provides API to select the role: 
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Registering a Resource 
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Finding a Resource – 1/2 
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Finding a Resource – 2/2 
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Querying Resource State [GET] 
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Setting a Resource State [SET] 
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Observing Resource State 
[Observe] – 1/2 
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Observing Resource State 
[Observe] – 2/2 
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IoTivity Service Features 

Also provides developer-friendly SERVICE APIs that can be frequently utilized like: 

• Things Manager for grouping 

• Soft Sensor Manager for data aggregation 

• Protocol Plugin Manager and Web Service Interface for extensibility 

 

Corresponding IoTivity Project: 

• Primitive Service Project 

• Web Service Interface Project 
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Things Manager 

Provides Activation and/or Configuration of the GROUP of THINGS: 

• CRUD & N of the Group, Configuration of the Group Action-Set 
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Soft Sensor Manager 

Provides a service for sensors’ DATA RE-DEFINITION: 

• (Example) “Discomfort” sensor – temperature + humidity sensors 
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Protocol Plugin Manager 

Provides EXTENSIBILITY for non IoTivity-based protocols 

• Loads the correspondent Protocol Plugin as .so at the given run-time 
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Web Service Interface 

Provides functionalities for enabling connection between IoTivity & Internet 

• Mapping OIC resource representation to web services APIs with RESTful 
manner for CRUD&N methods 

• Providing application model for aggregating Internet services and things 
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IoTivity v1.0 Has Been Just Released! 

Features: 

• Reference implementation of the full OIC Specification v1.0 

• Multi-PHY easy setup (on-Boarding): Wi-Fi OnBoarding with SoftAP 

• Remote Access based on XMPP 

• CoAP over TCP on Linux 

• Resource directory 

• Simulator for Java API (Linux): for OIC resource (Server/Client) 

• IPv6 and 6LoWPAN 

• Bluetooth Serial RFCOMM for Android, BLE GATT for Linux, Android, Arduino 

• Block-wise Transfer over IP/Bluetooth 

• ZigBee and Z-Wave service profile plugin 
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How Can I Contribute to IoTivity? 

[Reference] https://iotivity.org 

• Discuss on mailing list to get general consensus about approach 

• Pull latest code 

• Build on Your Supported Build Platform 

• Develop feature or fix bug following IoTivity Coding Standards; 
ask questions on mailing list as needed 

• Submit to Gerrit for review 

• Review and respond to reviewer comments 

• Change accepted! 
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Thank you! 
- Stay tuned on iotivity.org and openinterconnect.org - 

moonki1.hong@samsung.com 
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